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Abstract

This paper shows that when a classifier is evaluated with nonrandom test data, ROC
curves differ from the ROC curves that would be obtained with a random sample. To address
this bias, this paper introduces a procedure for plotting ROC curves that are inferred from
nonrandom test data. I provide simulations and an example with wine data to illustrate the
procedure as well as the magnitude of bias that is found in standard ROC curves generated
from nonrandom test data.
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1 Introduction

In many settings, data are collected in a nonrandom fashion. The decision to investigate in-
surance claims for fraud may be based on a predictive model. Investigating insurance claims is
costly and it may be difficult to allocate resources to inspect a random sample of claims. Sim-
ilarly, the Internal Revenue Service (IRS) uses a model that predicts tax-filing errors to select
tax returns for audits. A recommender system may only show the user items that are predicted
to be of interest. In these three examples, data are only collected for instances that are judged
to be more likely to be positive cases.

This paper makes two contributions. This paper’s first contribution is a characterization of
the bias that results in receiver operating characteristic (ROC) curves when they are generated
with nonrandom test data. Nonrandom test data can arise from using the classifier that we want
to evaluate to select the test data or from using some other classifier to select the test data.
This paper shows that the bias that arises in evaluating the classifier that was used to select
the test data is similar to the well-known bias for regression with truncation on the dependent
variable. When we only observe cases which are scored sufficiently high by the classifier, there
is a type of attenuation bias for ROC curves. This paper also shows that the ROC curves are
pushed outward for a classifier with low correlation to the classifier that was used to select the
test data. This bias that arises when another classifier selected the test data is related to the
bias for linear regression with incidental truncation.

This paper’s second contribution is a procedure to create ROC curves that provide a consis-
tent estimate of the ROC curve that would be obtained with random test data. This procedure
infers the predictive power of the classifier based on available data and plots the implied ROC
curve. The derived ROC curves are based on econometric work on bivariate probit analysis (e.g.
Van de Ven and Van Pragg (1981) and Poirier (1980)). A key difference between this paper and
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truth

positive negative

prediction

positive True False

Positives (TP ) Positives (FP )

negative False True

Negatives (FN) Negatives (TN)

total Positives (P ) Negatives (N)

Table 1: Confusion matrix.

prior work on selection problems is that the problems considered by this paper are not regression
equations. Section 4.2 discusses instances for which ROC curves are biased, but the parameters
of a regression equation would not be. This paper makes distributional assumptions that lead
to maximum likelihood problems that are similar to those encountered in estimating regression
equations with truncation or incidental truncation. Under the distributional assumptions used
in this paper, a classifier’s expected ROC curve is determined by two parameters. The first pa-
rameter determines how many positive cases there are in the population. The second parameter
is the correlation of the classifier’s output with the true latent propensity to be a positive case.

This paper’s procedure is related to the Dorfman-Alf (1969) procedure for estimating pa-
rameters of fitted ROC curves, which also uses maximum likelihood estimates under parametric
assumptions. The Dorfman-Alf procedure does not correct for selecting test data with a classi-
fier.

This paper contributes to the literature on evaluating classifiers. Recent works have shown
the connections between ROC curves and precision-recall curves (Davis and Goadrich 2006) and
cost curves (Hernández-Orallo et al. 2013). Other work on the properties of evaluation metrics
for classifiers include Wang et al. (2013), who show that normalized discounted cumulative gains
(NDCG) can consistently distinguish classifiers, and Moffat (2013), who provides properties of
evaluation metrics. There does not appear to be any existing work on evaluating classifiers with
nonrandom data.

This paper does not consider the problem of creating a classifier with nonrandom data.
To create classifiers with nonrandom training data, the econometric literature has built on the
sample-selection correction regression of Heckman (1976, 1979) (see Van de Ven and Van Pragg
(1981) for a binary classifier). The credit-scoring literature has introduced reject inference,
which incorporates information from unselected items, to improve classifier performance (see,
for example, Crook and Banasik 2004).

In the next section, I derive the bias in ROC curves when the classifier being evaluated was
used to select the test data. Section 3 derives a ROC curve that is consistent with nonrandom
test data. I consider two cases of nonrandom test data:

(i) Using the classifier that we want to evaluate to select the test data, and

(ii) Using an unknown classifier to select the test data.

Monte Carlo simulations and an example with wine quality data are presented in Sections 4
and 5 to illustrate this procedure as well as the bias found in standard ROC curves. Section 6
concludes.
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2 Classifiers and ROC curves

A classifier maps instances to predicted classes. This paper focuses on binary classifiers, which
map to two classes (e.g., positive and negative). While some classifiers map directly to predicted
classes, this paper focuses on classifiers that produce a continuous output. Given the classifier’s
output and a threshold, we classify all instances above the threshold as positive and all instances
below the threshold as negative.

The confusion matrix in Figure 1 defines true positives (TP), true negatives (TN), positives
(P), and negatives (N). We define sensitivity and specificity as

Sensitivity =
TP

P
, and (1)

Specificity =
TN

N
. (2)

ROC curves, which plot sensitivity as a function of specificity for all possible thresholds, illustrate
a classifier’s trade-off between true positives and false negatives. A higher value of sensitivity for
a given value of specificity indicates better performance. The area under the ROC curve (AUC)
is a commonly used metric for evaluating a classifier’s performance (as described by Bradley
(1997)). If the classifier’s output has no connection to the true class, the expected AUC would
be .5. An excellent introduction to ROC curves is provided by Fawcett (2006).

2.1 Evaluating a classifier that was used to select the test data

This section shows that ROC curves are biased downward for the classifier that was used to
select the test data. Let us denote the continuous output of classifier A for each instance i as
ai. I assume that there is some unobserved propensity to be a positive case and denote this
propensity as pi for each instance i. The true classification of each instance is

outcomei =

{
positive if pi ≥ p∗
negative otherwise

, (3)

where p∗ is the threshold for an instance to be a positive case. A value of p∗ = 0 indicates that
half of the observations are positive cases. The class skew increases with the absolute value of
p∗. Throughout this paper, I treat both pi and ai as (possibly correlated) random variables.
The modeler never observes pi, only outcomei. For a given threshold c, we can give probabilistic
definitions of sensitivity and specificity:

Sensitivity = Prob(ai > c | pi > p∗), and (4)

Specificity = Prob(ai < c | pi < p∗). (5)

The values in Equations (1) and (2) provide sample estimates of these probabilities.
This section considers the simplest form of choosing test data based on the classifier’s output:

choosing all instances with a value of ai above s (for some constant s). We denote sensitivity
and specificity conditional on selection as

Sensitivity |Selection = Prob(ai > c | pi > p∗, ai > s), and (6)

Specificity |Selection = Prob(ai < c | pi < p∗, ai > s). (7)

When data are chosen based on the classifier’s output, the estimates in Equations (1) and (2)
provide an estimate of the values in Equations (6) and (7) instead of the values in Equations
(4) and (5).

The following lemma will aid in proving our results regarding the bias in standard ROC
curves for nonrandom test data.
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Lemma 1 For a fixed value of c, conditioning on selection

(i) Increases sensitivity, i.e.

Sensitivity < Sensitivity |Selection for all −∞ < s < c , and

(ii) Decreases specificity, i.e.

Specificity > Specificity |Selection for all −∞ < s < c.

All proofs are provided in the appendix. For a given cutoff level, selection moves sensitivity and
specificity in opposite directions. The intuition for this result is that, as we focus on instances
that our classifier considers more likely to be positive cases, we will have more positive cases
in our test data. Sensitivity, which is conditional on the number of positive cases, is biased
downward as the relative prevalence of positive cases increases. Similarly, specificity is biased
upward as the relative number of negative cases decreases.

The ROC curve plots sensitivity as a function of specificity:

Sensitivity( Specificity) =Prob(ai > c | pi > p∗), where c satisfies

Specificity = Prob(ai < c | pi < p∗). (8)

Up to this point, we have not made any distributional assumptions. To derive analytical results
about the effect of selection on ROC curves, it is useful to assume that pi and ai come from a
bivariate normal distribution:(

pi
ai

)
∼ N2

([
0
0

]
,

[
1 ρap
ρap 1

])
.

The multivariate normal distribution is chosen because of the relative ease of working with
conditional distributions. Given that the scale of the unobserved risk is arbitrary, I define the
mean and variance of pi to be zero and one. This is only done for notational simplicity and
pi can be redefined such that is has mean zero and variance one. The assumption that the
classifier’s output is normally distributed is an easily testable assumption.

We are now ready to state the main result of this section.

Proposition 2 When test data are selected based on the classifier that we want to evaluate,
sensitivity is lower for all values of specificity between zero and one.

The assumed bivariate distribution is a sufficient but not necessary condition for Proposition 2.
The downward bias in the ROC curve is created by truncating the distribution of the classifier’s
output. Truncation causes an attenuation bias in perceived correlation between the classifier’s
output and the latent propensity to be a positive case. This attenuation bias causes the ROC
curve to cave in.

2.2 Evaluating a classifier with test data selected by an another classifier

I now consider the case of using another classifier, with output denoted as b, to select the test
data. This paper focuses on situations in which b is not observed. Appendix B explores the case
when b is observed. We assume that each instance of b can be written as

bi = δ Xi + γ ai + εi,

where Xi is a vector of features for case i and εi is a standard normal random variable. The
parameter δ is a vector of coefficients and γ indicates the degree to which the classifier’s output
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Figure 1: ROC curves for a classifier that was used to select the test data. The simulation above
uses ρap = .7 and p∗ = 0. For data that was selected by the classifier, 1,000 instances are drawn
from the bivariate normal distribution and the 500 draws with the greatest value of a are chosen.

was incorporated into the selection process. I assume that ε is mean independent of X and α,
i.e. E(ε|X,α) = 0. This assumption allows for estimation of δ and γ by a probit regression.

The selection rule is {
Selected if δ Xi + γ ai + εi > s
Not selected otherwise

. (9)

When δ = 0, γ = 1, and Var(ε) = 0, this selection rule reduces to the case explored in Section
2.1. A positive correlation between ε and p indicates that information that used to select the
test data, which is not included in a, is predictive of positive cases.

3 ROC curves for nonrandom test data

This paper’s procedure for creating ROC curves that are robust to sample selection is to infer the
predictive power of the classifier (taking truncation into consideration) then draw the ROC curve
that is implied by our distributional assumptions. The proposed procedure has the following
three steps.

Step 1 Subtract the mean and divide by the standard deviation to standardize the classifier’s
output. The mean and standard deviation should be based on all of the data, not only on
the selected instances.

Step 2 Estimate p∗ and the correlation between the classifier’s output and the latent propensity
to be a positive case, i.e. ρap.

Step 3 Draw the ROC curve that is implied by our estimates in Step 2 and

Sensitivity( Specificity) =Prob(ai > c | pi > p∗), where c satisfies

Specificity = Prob(ai < c | pi < p∗). (10)
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Figure 2: ROC curves with test data selected by another classifier. The simulation above use
ρap = ρεp = .7, γ = 0, and p∗ = 0. For data that was selected by the classifier, 1,000 instances
are drawn from the bivariate normal distribution and the 500 draws with the greatest value of
γ a+ ε are chosen.

To draw the ROC that implied by these estimates (denoted here as p̂∗ and ρ̂ap), begin with a
set of cutoffs with sufficiently large range (e.g., -4 to 4). For each cutoff c ∈ [−4, 4], we find the
corresponding value of sensitivity as

Prob(ai > c | pi > p∗) =
[
1− Φ(p̂∗)

]−1
∫ ∞
c

φ(a)

[
1− Φ

([
p̂∗ − ρ̂ap a

]
/

√
1− ρ̂ap2

)]
da (11)

and specificity as

Prob(ai < c | pi < p∗) = Φ(p̂∗)−1

∫ c

−∞
φ(a) Φ

([
p̂∗ − ρ̂ap a

]
/

√
1− ρ̂ap2

)
da. (12)

The ROC curve that we draw in Step 3 is a deterministic function of the maximum likelihood
estimates from Step 2. By the functional invariance property of maximum likelihood estimates,
we know that the ROC curve drawn in Step 3 is a consistent estimate of the expected ROC
curve.

The remainder of this section derives the maximum likelihood estimates for p∗ and the cor-
relation between the classifier and the latent propensity to be a positive case. These maximum
likelihood estimates, as well as Equations (11) and (12), are based on an assumption of multi-
variate normality. The example in Section 4 illustrates the performance of this procedure for a
case when the classifier’s output is not normally distributed.
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3.1 Evaluating a classifier that was used to select the test data

After selecting on a, the likelihood function for the data can be expressed as

L =
∏
i

Φ(−[p∗ − ρap ai]/
√

1− ρ2
ap)

1(outcomei=positive)

× Φ([p∗ − ρap ai]/
√

1− ρ2
ap)

1(outcomei=negative) × φ(ai), (13)

where 1( ) is the indicator function. We can find the maximum likelihood estimates for ρap and
p∗ from

ρ̂ap, p̂∗ = arg max
ρap,p∗

∑
i

[1(outcomei = positive]× ln[Φ(−[p∗ − ρap ai]/
√

1− ρ2
ap)]

+
∑
i

[1(outcomei = negative)]× ln[Φ([p∗ − ρap ai]/
√

1− ρ2
ap)] (14)

The maximum likelihood estimates only depend on the instances that were selected by the
classifier. The non-selected cases do not provide any additional information. An additional ben-
efit of this procedure is that it provides an estimate of p∗. We can use the marginal distribution
of pi to infer the percent of positive cases in the population.

3.2 Evaluating a classifier with test data selected by another classifier

Under the selection rule {
Selected if δ Xi + γ ai + εi > s
Not selected otherwise

,

the likelihood function is

L =
∏
i

Φ2(δ Xi + γ ai − s, −(p∗ − ai ρap)/
√

1− ρ2
ap ; ρεp)

1(outcomei=positive)

× Φ2(δ Xi + γ ai − s, (p∗ − ai ρap)/
√

1− ρ2
ap ;−ρεp)1(outcomei=negative)

× Φ(−[δ Xi + γ ai − s])1(outcomei=NA). (15)

This is a reparameterization of the likelihood derived by Van de Ven and Van Pragg (1981).
The parameters δ, γ, s, ρap, and ρεp can be estimated by maximizing the likelihood function in
Equation (15).

4 Simulation

This section reports the results of simulation exercises for both of the procedures presented in
the previous section. The purpose of these simulations is to illustrate the performance of inferred
ROC curves as well as the bias that arises in standard ROC curves.

4.1 Evaluating a classifier that was used to select the test data

I first simulate the ROC curve that is obtained with random test data. For each Monte Carlo
run, I draw 500 observations from the distribution(

pi
ai

)
∼ N2

([
0
0

]
,

[
1 ρap
ρap 1

])
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Evaluating a classifier that was used to select the test data

ρap = .2 ρap = .5 ρap = .7

AUC for ROC curves .590 .730 .830
with a random sample (.026) (.022) (.018)

AUC for standard ROC curves .553 .643 .719
with data selected by a classifier (.027) (.025) (.025)

AUC for inferred ROC curves .591 .730 .830
with data selected by a classifier (.041) (.034) (.027)

Portion positive cases in .564 .666 .746
nonrandom test data (.022) (.022) (.021)

Table 2: Results based on 10,000 simulations. Each simulation is based on a sample of 500 draws.
Mean values across the simulations are presented with standard deviations in parenthesis. The
parameter p∗ is set to zero for all simulations so the portion of positive cases in the unbiased
case is .5.

and define the outcome as

outcomei =

{
positive if pi ≥ p∗
negative otherwise

.

I then calculate the AUC for A. This serves as an estimate of the unbiased AUC.
Next, I simulate the ROC curve that results with selection and with the inferred ROC curve.

I draw 1,000 observations from this distribution, sort them by the values of a and keep the top
500. This is done so that there is a high degree of selectivity, but the number of observations
used to generate the ROC curve is the same for both the random and nonrandom cases. I then
use the 500 nonrandom observations to estimate ρap and p∗ based on Equation (14). These
values are used to generate the ROC curve based on

Sensitivity( Specificity) =Prob(ai > c | pi > p̂∗), where c satisfies

Specificity = Prob(ai < c | pi < p̂∗).

I use a value of p∗ = 0 for all simulations, but vary the value of ρap across simulations. ROC
curves for one simulation are presented in Figure 1. The biased ROC is caved in version of the
ROC that is obtained with random data. The inferred ROC curve presents a smoothed out
version of the unbiased ROC curve.

I use 100,000 Monte Carlo runs for each value of ρap. These results are provided in Table
2. For better classifiers, which have larger values of ρap, the bias of the AUC of standard ROC
curves is larger. When ρap = .7, the AUC for standard ROC when the data are selected by the
classifier is 13% less than the AUC with a random sample (.719 compared with .830). The bias
when ρap = .2 is only 6% (.553 compared with .590). In each case, the average area under the
inferred ROC curves matches the average AUC that is obtained with a random sample.

4.2 Evaluating a classifier with test data selected by another classifier

For each Monte Carlo run, I draw 1,000 observations from the distribution pi
ai
εi

 ∼ N3

 0
0
0

 ,
 1 ρap ρεp
ρap 1 0
ρεp 0 1


8



Evaluating a classifier with test data selected by another classifier

ρap = .2 ρap = .5 ρap = .7

AUC for ROC curves .590 .730 .830
with a random sample (.026) (.022) (.018)

For no correlation between classifiers and data selected by a highly
predictive classifier, i.e. γ = 0, ρεp = .7

AUC for standard ROC curves .619 .804 .936
with data selected by a classifier (.028) (.022) (.011)

AUC for inferred ROC curves .591 .734 .854
with data selected by a classifier (.031) (.058) (.042)

For .5 correlation between classifiers and data selected by a highly
predictive classifier, i.e. γ = 1, ρεp = .7

AUC for standard ROC curves .578 .541 .683
with data selected by a classifier (.028) (.032) (.059)

AUC for inferred ROC curves .579 .708 .779
with data selected by a classifier (.084) (.084) (.095)

For .5 correlation between classifiers and data selected by a less
predictive classifier, i.e. γ = 1, ρεp = 0

AUC for standard ROC curves .575 .698 .796
with data selected by a classifier (.026) (.024) (.021)

AUC for inferred ROC curves .591 .730 .832
with data selected by a classifier (.093) (.077) (.057)

Table 3: Results based on 10,000 simulations. Each simulation is based on a sample of 500
draws. Mean values are presented with standard deviations in parenthesis. The parameter p∗ is
set to zero for all simulations.
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and define the outcome as before. I then sort the values by (γai + εi) and keep the 500 largest.
This is equivalent to setting δ = 0 in Equation (9).

Across simulations, I vary the correlation between the classifiers and the correlation of the
classifier that was used to select the test data with the latent propensity to be a positive case.
The correlation between the classifiers is

Cor(ai, bi) =
γ

1 + γ2

and the correlation between the classifier that was used to select the test data and the latent
propensity to be a positive case is

Cor(pi, bi) =
γ ρap + ρεp

1 + γ2
.

When there is no correlation between the classifiers (γ = 0), there is an upward bias in the
AUC for standard ROC curves. This is related to the tendency of ROC curves to be “overly
optimistic” when the data is skewed (Davis and Goadrich 2006, p. 233). The bias is largest
(13%) when ρap = ρεp = .7. The cases for which γ = 0 illustrate another difference between the
problem considered by this paper and the econometric literature on sample-selection bias. For
a regression, when there is no correlation between the selection rule and the regressors in the
equation of interest, there is no bias for ordinary least squares regression.

When there is a .5 correlation between the classifiers (i.e. γ = 1), the ROC curve is biased
downward. For small positive values of γ (results not reported), there is an upward bias in ROC
curves. As the correlation between the classifiers increases, the bias becomes more similar to the
truncation bias explored in Section 4.1. The cases for which ρεp = 0 illustrate another difference
between the problem considered by this paper and the econometric literature on sample-selection
bias. For a regression, when there is no correlation between the stochastic element in the selection
equation and the stochastic element in the outcome equation, there is no bias. By contrast, the
bottom panel of Table 3 shows that there is a downward bias for ROC curves in this situation.

For γ = 1 and ρεp = .7, there is a noticeable difference between the areas under the inferred
ROC curve and the AUCs that are obtained with random test data. While these values are
closer to the AUCs obtained with random test data than standard ROC curves with nonrandom
test data, the standard deviations of the AUCs is much larger for inferred ROC curves. In results
not shown, the differences between area under the inferred ROC curve and the AUC obtained
with random test data are decreasing in the size of the sample. Appendix B shows that, when
the classifier that selected the test data is observed, the average and standard deviation of AUCs
from inferred ROC curves are equal to those obtained with random test data.

5 An example with wine-quality data

To provide a demonstration of this procedure with non-simulated data, I use data on white
wine quality from Cortez et al. (2009).1 This dataset contains eleven attributes for 4,898 white
wines, including alcohol content, citric acid, and residual sugar. A detailed description of this
data are provided by Cortez et al. For the measure of wine quality, each wine was evaluated by
experts and given a score from zero to ten (with ten being the highest quality). Because we are
interested in binary prediction, I define a wine with a score of six or higher as “good wine” and
other wines as “not good wine.”

I use all eleven attributes in a random forest classifier (based on Breiman (2001) and imple-
mented in R using Liaw and Wiener’s (2002) randomForest package) to predict (binary) wine

1These data are available at the University of California at Irvine’s Machine Learning Repository, https:

//archive.ics.uci.edu/ml/datasets.html.

10

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html


Figure 3: Histogram of the random forest’s output. The mean, variance, and skew are .71, .05,
and -.62, respectively.

quality. The random forest contains 1,000 trees and tries three attributes at each split. I use
the first 2/3 of the observations (3,233 observations) as the training data and the remaining 1/3
(1,665 observations) as the test data.

I first find the ROC curve for the random forest classifier using the full set of test data. The
area under the ROC curve is .83. Next, let us suppose that the wine experts do not have enough
time to score all of the wine in the test data. Preferring to taste wine that is more likely to be
good wine, the experts taste the half the test data that the random forest classifier predicted
was most likely to be good wine. With only half of the test data available, the area under the
ROC curve falls to .60.

I now perform the procedure described in Section 3 with the half of the test data predicted
to be good wine. Figure 3 presents a histogram of the random forest’s scores. The distribution is
clearly non-Gaussian. This example provides some insight into the performance of this paper’s
proposed procedure when its assumptions are not met.

I standardize the random forest scores and maximize Equation (9) to find the estimates
ρ̂ap = .64 and p̂∗ = −.55.

Figure 3 plots the ROC curves that are obtained with the full set of test data, the half of the
test data that received a high score from the random forest, and the ROC curve based on our
estimates of p∗ and ρap. The ROC curve based on our estimates of p∗ and ρap closely matches
the ROC curve obtained with the full set of test data.

6 Discussion and Conclusion

For test data that is chosen by the classifier that we want to evaluate, ROC curves are biased
downward. When test data was selected by another classifier, the direction of the bias in the
ROC is not clear. This paper presents a procedure for creating ROC curves that provide a
consistent estimate of the ROC curve that would be obtained with random test data.

The procedure introduced here relies on distributional assumptions. The example in Section
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Figure 4: ROC curves for wine quality prediction, as described in Section 5. The area under
the ROC curve that uses all of the test data is .83. The areas under the standard and inferred
ROC curves are .60 and .81, respectively.

5 violates the assumed distribution for the classifier’s output and the area under the inferred
ROC curve is a still a close match to the area under the ROC curve that would be obtained
with the full set of test data. If non-Gaussian distributions are preferred for classifiers’ output,
the multivariate distributions used in this paper could be written in terms of copulas, as has
been done for sample-selection bias in a regression setting (as in Li and Rahman (2011)).

An advantage of these distributional assumptions is that they introduce a new parameter
which measures the correlation between the classifier’s output and latent propensity to be a
positive case. Also, given that our inferred ROC curves are based on maximum likelihood
estimates, it is possible to construct confidence bands for the curves.

Another advantage of these distributional assumptions is that the estimation of the parameter
p∗ leads an estimate of the percent of positive cases in the population. This parameter may be of
interest to an organization like the IRS that could use p̂∗ to estimate the percent of tax returns
that contain errors.

A Proofs

Proof of Lemma 1.
For (i):

We want to show that

Prob(ai > c | pi > p∗) < Prob(ai > c | pi > p∗, ai > s).

We assume that Prob(pi > p∗) and Prob(ai > s) are both nonzero. If our selection rule s were
negative enough, selection would have no impact on sensitivity:

lim
s→−∞

Prob(ai > c | pi > p∗, ai > s) = Prob(ai > c | pi > p∗).

12



We will show that sensitivity is monotonically increasing in the selection rule s. We first rewrite
specificity in terms of the pdf of ai conditional on (pi > p∗) as

Prob(ai > c | pi > p∗, ai > s) =
Prob(ai > c | pi > p∗)

Prob(ai > s | pi > p∗)
=

∫∞
c fa|p>p∗(ai)dai∫∞
s fa|p>p∗(ai)dai

,

where fa|p>p∗ is pdf of ai conditional on (pi > p∗). We take the derivative of specificity condi-
tional on selection with respect to s through a straight-forward application of Leibniz rule:

d

ds

(∫∞
c fa|p>p∗(ai)dai∫∞
s fa|p>p∗(ai)dai

)
= fa|p>p∗(s)

∫∞
c fa|p>p∗(ai)dai[∫∞
s fa|p>p∗(ai)dai

]2 > 0.

For (ii):
We want to show that

Prob(ai < c | pi < p∗) > Prob(ai < c | pi < p∗, ai > s).

We assume that Prob(pi < p∗) and Prob(ai > s) are both nonzero. As in part (i), we begin
by noting that if our selection rule s were negative enough, selection would have no impact on
specificity:

lim
s→−∞

Prob(ai < c | pi < p∗, ai > s) = Prob(ai < c | pi < p∗).

We will show that specificity is monotonically decreasing in the selection rule s. We first rewrite
specificity in terms of the pdf of ai conditional on (pi < p∗) as

Prob(ai < c | pi < p∗, ai > s) =
Prob(s < ai < c | pi < p∗)

Prob(ai > s | pi < p∗)
=

∫ c
s fa|p<p∗(ai)dai∫∞
s fa|p<p∗(ai)dai

,

where fa|p<p∗ is pdf of ai conditional on (pi < p∗). We take the derivative of specificity condi-
tional on selection with respect to s through a straight-forward application of Leibniz rule:

d

ds

( ∫ c
s fa|p<p∗(ai)dai∫∞
s fa|p<p∗(ai)dai

)
= −

fa|p<p∗(s)
[∫∞
s fa|p<p∗(ai)dai −

∫ c
s fa|p<p∗(ai)dai

][∫∞
s fa|p<p∗(ai)dai

]2 < 0.

�

Proof of Proposition 2.
Here, I show that sensitivity for a given level of specificity is a decreasing function of s. Since

this term approaches a point on the ROC curve as s approaches negative infinity, a monotonic
decrease in s implies that any point on the ROC curve will be lower.

I define sensitivity for a given level of specificity and selection rule s as

Sensitivity( Specificity, s ) =Prob(ai > c | pi > p∗, ai > s), where c satisfies

Specificity = Prob(ai < c | pi < p∗, ai > s),

assuming that Prob(pi < p∗ | ai > s), Prob(pi > p∗ | ai > s), and Prob(ai > s) are all nonzero.
For a fixed level of specificity, the effect of an increase in s on sensitivity is

d Sensitivity

d s
=

∂ Sensitivity

∂ s︸ ︷︷ ︸
Direct effect of s on sensitivity

+
∂ Sensitivity

∂ c

d c

d s︸ ︷︷ ︸
Indirect effect of changing c

.
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These terms are

∂ Sensitivity

∂ s
= fa|p>p∗(s)

∫∞
c fa|p>p∗(ai)dai[∫∞
s fa|p>p∗(ai)dai

]2 > 0,

∂ Sensitivity

∂ c
= −

fa|p>p∗(c)∫∞
s fa|p>p∗(ai)dai

< 0, and

d c

d s
= −∂ Prob(ai < c | pi < p∗, ai > s)/∂ c

∂ Prob(ai < c | pi < p∗, ai > s)/∂ s

=
fa|p<p∗(c)

[∫∞
s fa|p<p∗(ai)dai

]
fa|p<p∗(s)

[∫∞
c fa|p<p∗(ai)dai

] > 0,

where the last term follows from the use of the implicit function theorem. After applying some
high-school algebra, dSensitivity/d s can be written as

dSensitivity

d s
=
fa|p>p∗(s)fa|p<p∗(s)

[∫∞
c fa|p>p∗(ai)dai

] [∫∞
c fa|p<p∗(ai)dai

]
fa|p<p∗(s)

[∫∞
c fa|p<p∗(ai)dai

] [∫∞
s fa|p>p∗(ai)dai

]2
−
fa|p>p∗(c)fa|p<p∗(c)

[∫∞
s fa|p>p∗(ai)dai

] [∫∞
s fa|p<p∗(ai)dai

]
fa|p<p∗(s)

[∫∞
c fa|p<p∗(ai)dai

] [∫∞
s fa|p>p∗(ai)dai

]2 .

The denominator is clearly positive so we focus on the numerator. Given the bivariate distribu-
tion that we assumed, the condition for the numerator to be negative is

[φ(s)]2 Φ(−ρaps/(1− ρap)2)Φ(ρaps/(1− ρap)2)

×
∫ ∞
c

φ(ai)Φ(−aiρap/(1− ρ2
ap))dai

∫ ∞
c

φ(ai)Φ(aiρap/(1− ρ2
ap))dai

< [φ(c)]2 Φ(−ρapc/(1− ρap)2)Φ(ρapc/(1− ρap)2)

×
∫ ∞
s

φ(ai)Φ(−aiρap/(1− ρ2
ap))dai

∫ ∞
s

φ(ai)Φ(aiρap/(1− ρ2
ap))dai.

This condition holds for c > s. It follows that

dSensitivity

d s
< 0,

which implies that, for a fixed level of specificity, sensitivity is monotonically decreasing in
selectivity s.

�

B Evaluating a classifier with test data selected by an observed
classifier

As in the main text, I consider the case of selection of test data based another classifier, b.
Instance i is selected if bi > s and not selected otherwise. Unlike the main text, this section
explores situations in which b is observed. As before, I allow for correlation between the output
of classifiers A and B, which could arise from using similar attributes to make predictions: pi

ai
bi

 ∼ N3

 0
0
0

 ,
 1 ρap ρbp
ρap 1 ρab
ρbp ρab 1

 .
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Evaluating a classifier with test data selected by an observed classifier

ρap = .2 ρap = .5 ρap = .7

AUC for ROC curves .590 .730 .830
with a random sample (.026) (.022) (.018)

For no correlation between classifiers and data selected by a highly
predictive classifier, i.e. ρab = 0, ρbp = .7

AUC for standard ROC curves .619 .804 .936
with data selected by a classifier (.029) (.022) (.011)

AUC for inferred ROC curves .590 .730 .829
with data selected by a classifier (.023) (.021) (.015)

For .5 correlation between classifiers and data selected by a highly
predictive classifier, i.e. ρab = .5, ρbp = .7

AUC for standard ROC curves .533 .666 .800
with data selected by a classifier (.027) (.027) (.021)

AUC for inferred ROC curves .590 .730 .829
with data selected by a classifier (.025) (.020) (.015)

For .5 correlation between classifiers and data selected by a less
predictive classifier, i.e. ρab = .5, ρbp = .2

AUC for standard ROC curves .568 .722 .832
with data selected by a classifier (.026) (.023) (.018)

AUC for inferred ROC curves .591 .730 .830
with data selected by a classifier (.028) (.025) (.020)

For .5 correlation between classifiers and data selected by a
nonpredictive classifier, i.e. ρab = .5, ρbp = 0

AUC for standard ROC curves .599 .752 .863
with data selected by a classifier (.025) (.022) (.016)

AUC for inferred ROC curves .591 .730 .830
with data selected by a classifier (.029) (.026) (.021)

Table 4: Results based on 10,000 simulations. Each simulation is based on a sample of 500
draws. Mean values are presented with standard deviations in parenthesis. The parameter p∗ is
set to zero for all simulations.
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The likelihood function for the data can be expressed as

L =
∏
i

Φ(−[p∗ − E(pi|ai, bi)]/σp|ab)1(outcomei=positive)

× Φ([p∗ − E(pi|ai, bi)]/σp|ab)1(outcomei=negative) × φ(ai, bi), (16)

where σp|ab is the standard deviation of p conditional on a and b,

σp|ab ≡
√

1− 1

1− ρ2
ab

[(ρap − ρbpρab)ρap + (ρbp − ρapρab)ρbp] ,

and the expectation of pi conditional on ai and bi is

E(pi|ai, bi) =
1

1− ρ2
ab

[(ρap − ρbpρab)ai + (ρbp − ρapρab)bi] .

We estimate the parameters ρap, ρab, ρbp, and p∗ by maximizing the likelihood function in
Equation (16).

As in the main text, I use a simulation study to examine the performance of the procedure.
Table 4 presents these results. Not surprisingly, when the classifier that selected the test data
is observed, the average areas under the inferred ROC curves are much closer to the average
areas under the ROC curves that are based on random samples. We also see that the standard
deviations of the areas under the inferred ROC curves are closer to the standard deviations of
the areas under the ROC curves based on random samples.
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